Эконовости О компании Издания и
проекты
Авторам Реклама Подписка Контакты Архив Полезные
ссылки
       
 
№6, 2023: Раздел 2. Экология

<< Содержание номера
<< Архив


[RUS] / [ENG]
Раздел 2. Экология
А.Н. Сизенцов, Л.В. Галактионова, Р.П. Васина, В.В. Юрнаева. Использование представителей bacillus sp. для повышения стрессоустойчивости растений к биотическим факторам: аналитический обзор
https://www.doi.org/10.24412/1728-323X-2023-6-68-74

УДК: 57.047; 631.463; 632.937.1.05
А.Н. Сизенцов, канд.биол. наук, доцент, доцент кафедры биохимии и микробиологии ФГБОУ ВО Оренбургский государственный университет, e-mail: [email protected], Российская Федерация, г. Оренбург
Л.В. Галактионова, канд.биол. наук, доцент, зав. кафедрой биологии и почвоведения ФГБОУ ВО Оренбургский государственный университет, e-mail: [email protected], Российская Федерация, г. Оренбург
Р.П. Васина, соискатель кафедры биохимии и микробиологии ФГБОУ ВО Оренбургский государственный университет, e-mail: [email protected], Российская федерация, г. Оренбург
В.В. Юрнаева, соискатель кафедры биохимии и микробиологии ФГБОУ ВО Оренбургский государственный университет, e-mail: [email protected], Российская Федерация, г. Оренбург

Аннотация. В следствии неуклонного роста населения нашей планеты, глобальные запасы продовольствия испытывают все большую нагрузку. Следует отметить, что ситуация существенно усугубляется изменением климата, а также ухудшением качества почвы из-за чрезмерного многолетнего использования в качестве посевных площадей, масштабного использования удобрений, пестицидов и агрохимикатов. Для решения данной проблемы необходимо внедрять устойчивые методы ведения сельского хозяйства, для сведения к минимуму ущерба наносимого окружающей среде и в то же время оптимизировать рост и продуктивность сельскохозяйственных культур.
Многочисленные исследования, представленные в современной научной литературе, свидетельствуют о том, что в настоящее время ведется активный поиск альтернативных, экологически чистых способов улучшения роста сельскохозяйственных культур и борьбы с патогенами растений, при этом одной из наиболее перспективных областей проводимых научных изысканий является использование растительно-микробных ассоциаций для разработки устойчивых систем растениеводства.
Abstract. As a result of the steady growth of our planet's population, global food supplies are under increasing strain. It should be noted that the situation is significantly aggravated by climate change, as well as deterioration of soil quality due to excessive long-term use as acreage, large-scale use of fertilizers, pesticides and agrochemicals. To solve this problem, it is necessary to introduce sustainable farming methods to minimize damage to the environment and at the same time optimize the growth and productivity of crops.
Numerous studies presented in the modern scientific literature indicate that an active search is currently underway for alternative, environmentally friendly ways to improve crop growth and combat plant pathogens, while one of the most promising areas of scientific research is the use of plant-microbial associations to develop sustainable crop production systems.
Ключевые слова: Bacillus sp., стимуляторы роста, стрессоустойчивость растений, супрессивность, стрессоустойчивость
Key words: Bacillus sp., growth stimulants, stress resistance of plants, suppressiveness, stress resistance
Исследование выполнено за счет гранта Российского научного фонда № 23-26-10079, https://rscf.ru/project/23-26-10079/.

Библиографический список / References
1. Ang MC, Lew TTS. Non-destructive Technologies for Plant Health Diagnosis. Front Plant Sci. 2022 May 27;13:884454. doi: 10.3389/fpls.2022.884454.
2. Aloo BN, Tripathi V, Makumba BA, Mbega ER. Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Front Plant Sci. 2022 Sep 16;13:1002448. doi: 10.3389/fpls.2022.1002448.
3. Khosro M, Sohrabi Y. Bacterial biofertilizers for sustainable crop production: a review. ARPN J Agric Biol Sci. 2012. 7.5: 307-316.
4. Mahapatra S, Yadav R, Ramakrishna W. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. J Appl Microbiol. 2022 May;132(5):3543-3562. doi: 10.1111/jam.15480.
5. Rosić I, Nikolić I, Ranković T, Anteljević M, Medić O, Berić T, Stanković S. Genotyping-driven diversity assessment of biocontrol potent Bacillus spp. strain collection as a potential method for the development of strain-specific biomarkers. Arch Microbiol. 2023 Mar 13;205(4):114. doi: 10.1007/s00203-023-03460-9.
6. Radhakrishnan R, Hashem A, Abd Allah EF. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Front Physiol. 2017 Sep 6;8:667. doi: 10.3389/fphys.2017.00667.
7. Brul S, van Beilen J, Caspers M, O'Brien A, de Koster C, Oomes S, Smelt J, Kort R, Ter Beek A. Challenges and advances in systems biology analysis of Bacillus spore physiology; molecular differences between an extreme heat resistant spore forming Bacillus subtilis food isolate and a laboratory strain. Food Microbiol. 2011 Apr;28(2):221-7. doi: 10.1016/j.fm.2010.06.011.
8. Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, Xiong H, Helmann JD, Cai Y. Antagonism of Two Plant-Growth Promoting Bacillus velezensis Isolates Against Ralstonia solanacearum and Fusarium oxysporum. Sci Rep. 2018 Mar 12;8(1):4360. doi: 10.1038/s41598-018-22782-z.
9. Choudhary DK. Plant growth-promotion (PGP) activities and molecular characterization of rhizobacterial strains isolated from soybean (Glycine max L. Merril) plants against charcoal rot pathogen, Macrophomina phaseolina. Biotechnol Lett. 2011 Nov;33(11):2287-95. doi: 10.1007/s10529-011-0699-0. Epub 2011 Jul 16. PMID: 21833548.
10. Radhakrishnan R, Lee IJ. Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiol Biochem. 2016 Dec;109:181-189. doi: 10.1016/j.plaphy.2016.09.018.
11. Dursun A., Melek E, Mesude FD. Effects of foliar application of plant growth promoting bacterium on chemical contents, yield and growth of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.). Pakistan Journal of Botany. 2010. 42.5: 3349-3356.
12. Santoyo G, Guzmán-Guzmán P, Parra-Cota FI, Santos-Villalobos Sdl, Orozco-Mosqueda MdC, Glick BR. Plant Growth Stimulation by Microbial Consortia. Agronomy. 2021; 11(2):219. https://doi.org/10.3390/agronomy11020219.
13. Gadhave KR, Devlin PF, Ebertz A, Ross A, Gange AC. Soil Inoculation with Bacillus spp. Modifies Root Endophytic Bacterial Diversity, Evenness, and Community Composition in a Context-Specific Manner. Microb Ecol. 2018 Oct;76(3):741-750. doi: 10.1007/s00248-018-1160-x.
14. Rajendran G, Sing F, Desai AJ, Archana G. Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresour Technol. 2008 Jul;99(11):4544-50. doi: 10.1016/j.biortech.2007.06.057.
15. Zhao L, Xu Y, Lai XH, Shan C, Deng Z, Ji Y. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz J Microbiol. 2015 Oct-Dec;46(4):977-89. doi: 10.1590/S1517-838246420140024.
16. Dey R, Pal KK, Tilak KVBR. (2014). Plant Growth Promoting Rhizobacteria in Crop Protection and Challenges. In: Goyal, A., Manoharachary, C. (eds) Future Challenges in Crop Protection Against Fungal Pathogens. Fungal Biology. 2014. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1188-2_2
17. Tan S, Jiang Y, Song S, Huang J, Ling N, Xu Y, Shen Q. Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth. Crop Protection. 2013. 43: 134-140. doi.org/10.1016/j.cropro.2012.08.003.
18. Bhutani N, Maheshwari R, Negi M, & Suneja P. Optimization of IAA production by endophytic Bacillus spp. from Vigna radiata for their potential use as plant growth promoters. Israel Journal of Plant Sciences. 2018. 65(1-2): 83-96. doi.org/10.1163/22238980-00001025
19. Zhao Q, Shen Q, Ran W. et al. Inoculation of soil by Bacillus subtilis Y-IVI improves plant growth and colonization of the rhizosphere and interior tissues of muskmelon (Cucumis melo L.). Biol Fertil Soils. 2011. 47: 507–514. doi.org/10.1007/s00374-011-0558-0
20. Sharma T, Kaul S, Dhar MK. Diversity of culturable bacterial endophytes of saffron in Kashmir, India. Springerplus. 2015 Nov 2;4:661. doi: 10.1186/s40064-015-1435-3.
21. Subramanian P, Kim K, Krishnamoorthy R. et al. Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regul. 2015. 76: 327–332. doi.org/10.1007/s10725-014-9993-x
22. Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedouar A, Mori B, Calamassi R, Dazzo FB, Squartini A. Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol. 2008 Mar;63(3):383-400. doi: 10.1111/j.1574-6941.2007.00424.x.
23. Korir H, Mungai NW, Thuita M, Hamba Y, Masso C. Co-inoculation Effect of Rhizobia and Plant Growth Promoting Rhizobacteria on Common Bean Growth in a Low Phosphorus Soil. Front Plant Sci. 2017 Feb 7;8:141. doi: 10.3389/fpls.2017.00141.
24. Schwartz AR, Ortiz I, Maymon M, Herbold CW, Fujishige NA, Vijanderan JA, Villella W, Hanamoto K, Diener A, Sanders ER, et al. Bacillus simplex - A Little Known PGPB with Anti-Fungal Activity - Alters Pea Legume Root Architecture and Nodule Morphology When Coinoculated with Rhizobium leguminosarum bv. viciae. Agronomy. 2013; 3(4): 595-620. https://doi.org/10.3390/agronomy3040595
25. Li S, Zhang N, Zhang Z. et al. Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biol Fertil Soils. 2013. 49: 295–303. doi.org/10.1007/s00374-012-0718-x
26. Saini R, Dudeja SS, Giri R, Kumar V. Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol. 2015 Jan;55(1):74-81. doi: 10.1002/jobm.201300173.
27. Pandya M, Kumar GN, Rajkumar S. Invasion of rhizobial infection thread by non-rhizobia for colonization of Vigna radiata root nodules. FEMS Microbiol Lett. 2013 Nov;348(1):58-65. doi: 10.1111/1574-6968.12245.
28. Rajendran G, Sing F, Desai AJ, Archana G. Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresour Technol. 2008 Jul;99(11):4544-50. doi: 10.1016/j.biortech.2007.06.057.
29. Figueredo MS, Tonelli ML, Taurian T, Angelini J, Ibanez F, Valetti L, Munoz V, Anzuay MS, Luduena L, Fabra A. Interrelationships between Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144 in the induced systemic resistance against Sclerotium rolfsii and symbiosis on peanut plants. J Biosci. 2014 Dec;39(5):877-85. doi: 10.1007/s12038-014-9470-8.
30. Wei XL, Lin YB, Xu L, Han MS, Dong DH, Chen WM, Wang L, Wei GH. Bacillus radicibacter sp. nov., a new bacterium isolated from root nodule of Oxytropis ochrocephala Bunge. J Basic Microbiol. 2015 Oct;55(10):1212-8. doi: 10.1002/jobm.201400940.
31. Selvakumar G, Kundu S, Gupta AD, Shouche YS, Gupta HS. Isolation and characterization of nonrhizobial plant growth promoting bacteria from nodules of Kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Curr Microbiol. 2008 Feb;56(2):134-9. doi: 10.1007/s00284-007-9062-z.
32. Ikeda AC, Bassani LL, Adamoski D, Stringari D, Cordeiro VK, Glienke C, Steffens MB, Hungria M, Galli-Terasawa LV. Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb Ecol. 2013 Jan;65(1):154-60. doi: 10.1007/s00248-012-0104-0.
33. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus. 2013 Oct 31;2:587. doi: 10.1186/2193-1801-2-587.
34. Wu Y, Zhao C, Farmer J, Sun J. Effects of bio-organic fertilizer on pepper growth and Fusarium wilt biocontrol. Scientia Horticulturae. 2015. 193: 114-120. doi.org/10.1016/j.scienta.2015.06.039.
35. Hassan T, Naz I, & Hussain M. Bacillus cereus: a competent plant growth promoting bacterium of saline sodic field. Pakistan Journal of Botany. 2018 50(3): 1029-1037.
36. Usha C, Swarnendu R, Arka PC, Pannalal D, Bishwanath C. Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium.  Recent Research in Science and Technology. 2011. 3(11): 61-70
37. Shahzad R, Khan AL, Bilal S, Waqas M, Kang S, Lee I. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environmental and Experimental Botany. 2017. 136: 68-77. doi.org/10.1016/j.envexpbot.2017.01.010.
38. Park YG, Mun BG, Kang SM, Hussain A, Shahzad R, Seo CW, Kim AY, Lee SU, Oh KY, Lee DY, Lee IJ, Yun BW. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One. 2017 Mar 10;12(3):e0173203. doi: 10.1371/journal.pone.0173203.
39. Salomon MV, Bottini R, de Souza Filho GA, Cohen AC, Moreno D, Gil M, Piccoli P. Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. Physiol Plant. 2014 Aug;151(4):359-74. doi: 10.1111/ppl.12117.
40. Zhou C, Zhu L, Xie Y, Li F, Xiao X, Ma Z, Wang J. Bacillus licheniformis SA03 Confers Increased Saline-Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation. Front Plant Sci. 2017 Jun 29;8:1143. doi: 10.3389/fpls.2017.01143.
41. Santos JBD, Cruz JO, Geraldo LC, Dias EG, Queiroz PRM, Monnerat RG, Borges M, Blassioli-Moraes MC, Blum LEB. Detection and evaluation of volatile and non-volatile antifungal compounds produced by Bacillus spp. strains. Microbiol Res. 2023 Oct;275:127465. doi: 10.1016/j.micres.2023.127465.
42. Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ. Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol. 2020 Jun;128(6):1583-1594. doi: 10.1111/jam.14506.
43. Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr. 2019 May;7(3). doi: 10.1128/microbiolspec.GPP3-0032-2018.
44. Fayad N, Kallassy Awad M, Mahillon J. Diversity of Bacillus cereus sensu lato mobilome. BMC Genomics. 2019 May 29;20(1):436. doi: 10.1186/s12864-019-5764-4.
45. Ku Y, Xu G, Tian X, Xie H, Yang X, Cao C, Chen Y. Root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6. PLoS One. 2018 Nov 21;13(11). doi: 10.1371/journal.pone.0200181.
46. Singh HB, Chetan K, Surya PS. Intellectual property issues in microbiology. Singapore: Springer, 2019.
47. Khan MA, Asaf S, Khan AL, Jan R, Kang SM, Kim KM, Lee IJ. Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol. 2020 Jun 22;20(1):175. doi: 10.1186/s12866-020-01822-7.
48. Wang C, Liu Z, Huang Y, Zhang Y, Wang X, Hu Z. Cadmium-resistant rhizobacterium Bacillus cereus M4 promotes the growth and reduces cadmium accumulation in rice (Oryza sativa L.). Environ Toxicol Pharmacol. 2019 Nov;72:103265. doi: 10.1016/j.etap.2019.103265.
49. Adeleke BS, Ayangbenro AS, Babalola OO. Genomic Analysis of Endophytic Bacillus cereus T4S and Its Plant Growth-Promoting Traits. Plants (Basel). 2021 Aug 26;10(9):1776. doi: 10.3390/plants10091776.
50. Zhou H, Ren ZH, Zu X, Yu XY, Zhu HJ, Li XJ, Zhong J, Liu EM. Efficacy of Plant Growth-Promoting Bacteria Bacillus cereus YN917 for Biocontrol of Rice Blast. Front Microbiol. 2021 Jul 19;12:684888. doi: 10.3389/fmicb.2021.684888.
51. Pazarlar S, Madriz-Ordeñana K, Thordal-Christensen H. Bacillus cereus EC9 protects tomato against Fusarium wilt through JA/ET-activated immunity. Front Plant Sci. 2022 Dec 15;13:1090947. doi: 10.3389/fpls.2022.1090947.
52. Kumar P, Pahal V, Gupta A, Vadhan R, Chandra H, Dubey RC. Effect of silver nanoparticles and Bacillus cereus LPR2 on the growth of Zea mays. Sci Rep. 2020 Nov 23;10(1):20409. doi: 10.1038/s41598-020-77460-w.
53. Hashem A, Tabassum B, Fathi Abd Allah E. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci. 2019 Sep;26(6):1291-1297. doi: 10.1016/j.sjbs.2019.05.004.
54. Zehra A, Raytekar NA, Meena M, Swapnil P. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. Curr Res Microb Sci. 2021 Aug 8;2:100054. doi: 10.1016/j.crmicr.2021.100054.
55. Xiao Y, Wu K. Recent progress on the interaction between insects and Bacillus thuringiensis crops. Philos Trans R Soc Lond B Biol Sci. 2019 Mar 4;374(1767):20180316. doi: 10.1098/rstb.2018.0316.
56. Domínguez-Arrizabalaga M, Villanueva M, Escriche B, Ancín-Azpilicueta C, Caballero P. Insecticidal Activity of Bacillus thuringiensis Proteins Against Coleopteran Pests. Toxins (Basel). 2020 Jun 29;12(7):430. doi: 10.3390/toxins12070430.
57. Pinos D, Andrés-Garrido A, Ferré J, Hernández-Martínez P. Response Mechanisms of Invertebrates to Bacillus thuringiensis and Its Pesticidal Proteins. Microbiol Mol Biol Rev. 2021 Jan 27;85(1):e00007-20. doi: 10.1128/MMBR.00007-20.
58. Ali S, Hameed S, Shahid M, Iqbal M, Lazarovits G, Imran A. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiol Res. 2020 Feb;232:126389. doi: 10.1016/j.micres.2019.126389.
59. Chowdhury SP, Hartmann A, Gao X, Borriss R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front Microbiol. 2015 Jul 28;6:780. doi: 10.3389/fmicb.2015.00780.
60. Yu C, Chen H, Zhu L, Song Y, Jiang Q, Zhang Y, Ali Q, Gu Q, Gao X, Borriss R, Dong S, Wu H. Profiling of Antimicrobial Metabolites Synthesized by the Endophytic and Genetically Amenable Biocontrol Strain Bacillus velezensis DMW1. Microbiol Spectr. 2023 Feb 21;11(2):e0003823. doi: 10.1128/spectrum.00038-23.
61. Wu G, Liu Y, Xu Y, Zhang G, Shen Q, Zhang R. Exploring Elicitors of the Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 to Induce Plant Systemic Resistance and Their Interactions With Plant Signaling Pathways. Mol Plant Microbe Interact. 2018 May;31(5):560-567. doi: 10.1094/MPMI-11-17-0273-R.
62. Abriouel H, Franz CM, Ben Omar N, Gálvez A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev. 2011 Jan;35(1):201-32. doi: 10.1111/j.1574-6976.2010.00244.x.
63. Dimkic I, Janakiev T, Petrovic M, Degrassi G, Fira D. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms – a review. Physiological and Molecular Plant Pathology. 2022. 117: 101754. doi.org/10.1016/j.pmpp.2021.101754
64. Salazar B, Ortiz A, Keswani C, Minkina T, Mandzhieva S, Pratap Singh S, Rekadwad B, Borriss R, Jain A, Singh HB, Sansinenea E. Bacillus spp. as Bio-factories for Antifungal Secondary Metabolites: Innovation Beyond Whole Organism Formulations. Microb Ecol. 2023 Jul;86(1):1-24. doi: 10.1007/s00248-022-02044-2.
65. Li B, Li Q, Xu Z, Zhang N, Shen Q, Zhang R. Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front Microbiol. 2014 Nov 21;5:636. doi: 10.3389/fmicb.2014.00636.
66. Wu L, Wu H, Chen L, Yu X, Borriss R, Gao X. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep. 2015 Aug 13;5:12975. doi: 10.1038/srep12975.
67. Dimkić I, Janakiev T, Petrović M, Degrassi G, Fira D. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms-A review. Physiological and Molecular Plant Pathology. 2022. 117: 101754. doi.org/10.1016/j.pmpp.2021.101754.
68. Sevugapperumal N, Senthilraja S, Renukadevi C. Antimicrobial peptides of Bacillus species: biosynthesis, mode of action and their role in plant disease management. In: R.N. Pandey, B.N. Chakraborty, D. Singh & P. Sharma (Eds.) Microbial antagonists: their role in biological control of plant diseases. New Delhi: Today & Tomorrow's Printers and Publishers. 2019. 487–514.
69. Zhang N, Wang Z, Shao J, Xu Z, Liu Y, Xun W, Miao Y, Shen Q, Zhang R. Biocontrol mechanisms of Bacillus: Improving the efficiency of green agriculture. Microb Biotechnol. 2023 Oct 14. doi: 10.1111/1751-7915.14348.
70. Radhakrishnan R, Hashem A, Abd Allah EF. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Front Physiol. 2017 Sep 6;8:667. doi: 10.3389/fphys.2017.00667.


Прикреплённые файлы:




<< Содержание номера
<< Архив

Дата последнего обновления: 18:58:40/24.02.24
   
     
       
 
ИАА "Информ-Экология"


   
     
 
       
 
Министерство природных ресурсов Российской Федерации


   
     
 
       
 
Счётчик


   
     
 
© Designed&Powered by 77mo.ru. 2007. All rights Reserved.